Notes on the natural history of Stillingia aquatica (Euphorbiaceae): with special attention to reproductive biology

  • George Rogers Palm Beach State College (ret.)
Keywords: caruncle, depression marsh, elaiosome, embryo abortion, Euphorbiaceae, Hippomaneae, geitonogamy, mixed mating system, protogyny

Abstract

Stillingia aquatica, a wetland shrub in the Southeastern U.S., was profiled in Southeast Florida from a natural history standpoint. The stem has exceptionally lightweight wood in common with other periodically root-inundated woody plants. Pseudowhorled tufts of conspicuous yellow leaves subtend the similarly colored spikelike thyrsoid inflorescences. The plants are monoecious, self-compatible, protogynous with respect to inflorescences, and with a mixed mating system. After a pistillate-only phase, pistillate and staminate phases overlap in time, and are positioned in close physical proximity within inflorescences. Then follows a prolonged phase of only staminate flowers plus maturing fruits. The inflorescences attract ants, bees, and especially abundant wasps, switching from mixed bees and wasps in the dry season to essentially just wasps in the wet season. Wind-pollination is minimal to none. Ants are often abundant in the inflorescences and believed to contribute to geitonogamy but are not necessary for fruitset. Agamospermy is none to negligible. The seeds often fail, with the failure rates varying between populations and between individual plants.

References

Bawa, K., K. Ganeshaiah, S. Hedge, & R. Shaanker. 1989. Embryo and seed abortion in plants. Nature 342:625.
Berry, P., R. Miller, & A. Wiedenhoeft. 1999. A new lightweight-wooded species of Anaxagorea (Annonaceae) from flooded black-water shrublands in southern Venezuela. Syst. Bot. 24:506–511.
Berry, P. & A. Wiedenhoeft. 2004. Micrandra inundata (Euphorbiaceae), a new species with unusual wood anatomy from black-water river banks in southern Venezuela. Syst. Bot. 29:125–133.
Bianchini, M. & E. Pacini. 1996. The caruncle of Ricinus communis L. (castor bean): its development and role in seed dehydration, rehydration, and germination. Int. J. Pl. Sci. 157:40–48.
Charlesworth, D. 1989. Why do plants produce so many more ovules than seeds? Nature 338:21–22.
Datta, P.C. & A. Naug. 1967 (published online 2009). Staining pollen tubes in the style; cotton blue versus carmine for general use. Stain Technol. 42:81–85.
Delnevo, N., E.J. van Etten, N. Clemente, L. Fogu, E. Pavarani, M. Byrne, & W. Stock. 2020. Pollen adaptation to ant pollination: a case study from the Proteaceae. Ann. Bot. (Oxford). 126:377–386.
Dutton, E.M. & M.E. Frederickson. 2012. Why ant pollination is rare: new evidence and implications of the antibiotic hypothesis. Arthropod-Pl. Interact. 6:561–569.
Erbar, C. & P. Leins. 2008. Secondary pollen presentation and a curious rupture of the style in Spigelia (Spigeliaceae, Gentianales). Pl. Biol. 1:389–402.
Esser, H.-J. 2012. The tribe Hippomaneae in Brazil. Rodriguésia 63:209–225. [Main reference to Stillingia p. 215.]
Faegri, K. & L. Van Der Pijl. 1979. The principles of pollination ecology. Revised. Ed. 244 p. Pergamon. Oxford, U.K.
Ge, X., J. Liu, & R. Wang. 2012 (2013). Effects of flooding on the germination of seed banks in the Nansi Lake wetlands, China. J. Freshwater Ecol. 28:225–237.
Gibbs, P.E. 2014. Late-acting self-incompatibility: the pariah breeding system in flowering plants. New Phytologist 203:717—734.
Goodwillie, C., S. Kalisz, & C. Eckert. 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Rev. Ecol. Evol. Syst. 36:47–79.
Hallett, A., R. Mitchell, E. Chamberlain, & J. Karron. 2017. Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators. AOB Plants. Published online. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544916/.
Harper, R. 1901. On a collection of plants made in Georgia in the summer of 1900. Bull. Torrey Bot. Club. 28:454–484.
Huft, M. 2016. Stillingia. In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico. 19+ vols. New York and Oxford. Vol. 12:233–234.
Ito, E. & K. Kikuzawa. 2003. Reduction of geitonogamy: flower abscission for departure of pollinators. Ecol. Res. (Tokyo) 18:177–183.
Jong, de T., N. Waser, & P. Klinkhamer. 1993. Geitonogamy: the neglected side of selfing. Tree 8:321–325.
Kärkkäinen, K., O. Savolainen, & V. Koski. 1999. Why do plants abort so many developing seeds: bad offspring or bad maternal genotypes? Evol. Ecol. 13:305–317.
Li, S., B. Chen, X. Huang, X. Chang, T. Tu, & D. Zhang. 2017. Stillingia: A newly recorded genus of Euphorbiaceae from China. Phytotaxa 296:187.
Makwana, M. & P. Akarsh. 2017. Stigma receptivity test in diverse species of tomato. Int. J. Agric. Sci. Res. 7:1–8.
Mennega, A. 2005. Wood anatomy of subfamily Euphorbioideae; a comparison with subfamilies Crotonoideae and Acalyphoideae and the implications for the circumscription of the Euphorbiaceae. IAWA Bull. 26:1–68. [S. aquatica 43, 44.]
Meyer, K., L. Soldaat, H. Auge, & H. Thulke. 2014. Adaptive and selective seed abortion reveals complex conditional decision making in plants. Amer. Naturalist 183:376–383.
Miller, J. & K. Miller. 2005. Forest plants of the Southeast and their wildlife uses. Univ. Georgia Press, Athens, Georgia, U.S.A.
Narbona, E. & R. Dirzo. 2010. A reassessment of the function of floral nectar in Croton suberosus (Euphorbiaceae): A reward for plant defenders and pollinators. Amer. J. Bot. 97:672–679.
Raju, A. & V. Ezradanam. 2002. Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr. Sci. 83:1395–1398.
Rogers, D.J. 1951. A revision of Stillingia in the New World. Ann. Missouri Bot. Gard. 38:207–259.
Silva-Filho, R., B.P. Brüger, and 10 additional authors. 2020. Flight distance and return capacity of Polistes lanio lanio. Florida Entomol. 103:38–40.
Solereder, H. 1908. Systematic anatomy of the Dicotyledons: A handbook for laboratories of pure and applied botany. Vol. 1. Introduction, Polypetalae, Gamopetalae. Translated from the original 1899 edition by L.A. Boodle and F.E. Fritsch and revised by D.H. Scott. Clarendon Press, Oxford, UK. Vol. 2. Monochlamydeae, Addenda, Concluding remarks. Translated from the original 1899 edition by L.A. Boodle and F.E. Fritsch and revised by D.H. Scott. Clarendon Press, Oxford, UK.
Stamp, N. & J. Lucas. 1990. Spatial patterns and dispersal distances of explosively dispersing plants in Florida sandhill vegetation. J. Ecol. 78:589–600.
Sun, K., Y. Cui, & B. Hauser. 2005. Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort. Planta 222:632–642.
Swenson, N. & B. Enquist. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Amer. J. Bot. 94:451–459.
Villamil, N., K. Boege, & G. Stone. 2020. BioRxiv preprint. Ant guards influence the mating system of their plant hosts by altering pollinator behaviour. bioRxiv preprint doi: https://doi.org/10.1101/2020.02.11.943431.
Webster, G. 1967. The genera of Euphorbiaceae in the southeastern United States. J. Arnold Arbor. 48:303–361.
Webster, G. 1994. Classification of the Euphorbiaceae. Ann. Missouri Bot. Gard. 81:3–32.
Webster, G. 2014. Euphorbiaceae. In: K. Kubitzki, ed. The families and genera of flowering plants. Flowering plants. Eudicots. Malpighiales. Springer, Berlin and Heidelberg, Germany. Pp. 51–216.
Weems, H. 2001 (revised 2014). Green lynx spider. Florida Div. Pl. Industry Entomol. Circ.181. Accessed online 8/20/2020. http://entnemdept.ufl.edu/creatures/BENEFICIAL/green_lynx_spider.htm
Wiens, D., E. King, D. Nickrent, C. Calvin, & L. Vivrette. 1989. Reply to Bawa et al.: Embryo and seed abortion in plants. Nature 342:626.
Wiens, D., L. Allphin, D. Mansfield, & G. Thackray. 2002. Developmental failure and loss of reproductive capacity as a factor in extinction: a nine-year study of Dedeckera eurekensis (Polygonaceae). Aliso 21:55–63.
Wunderlin, R.P., B.F. Hansen, A.R. Franck, & F.B. Essig. 2020. Atlas of Florida plants (http://florida.plantatlas.usf.edu/). [S. M. Landry & K. N. Campbell (application development), USF Water Institute.] Institute for Systematic Botany, Univ. S. Florida, Tampa, U.S.A. Accessed 24 Sep 2020.
Wurdack, K., P. Hoffmann, & M. Chase. 2005. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid RBCL and TRNL-F DNA sequences. Amer. J. Bot. 92:1397–1420. [Stillingia discussed, 1412]
Yamasaki, E., A. Kawakita, & S. Sakai. 2013. Modified leaves with disk-shaped nectaries of Macaranga sinensis (Euphorbiaceae) provide reward for pollinators. Amer. J. Bot. 100:628–632.
Published
2021-07-23
How to Cite
Rogers, G. (2021). Notes on the natural history of Stillingia aquatica (Euphorbiaceae): with special attention to reproductive biology. Journal of the Botanical Research Institute of Texas, 15(1), 183-199. https://doi.org/10.17348/jbrit.v15.i1.1060