Polyploidy and genome size variation in Phlox nana (Polemoniaceae) from the Pecos plains of New Mexico and the Davis Mountains of West Texas


  • Jamie Ladner Kansas State University, Herbarium and Division of Biology
  • Mark H. Mayfield Kansas State University, Herbarium and Division of Biology
  • L. Alan Prather Michigan State University, Herbarium and Department of Plant Biology
  • Carolyn J. Ferguson Kansas State University, Herbarium and Division of Biology




cytotype, chromosome count, flow cytometry, genome size


Polyploidy is conspicuous in the genus Phlox, and some species exhibit variation in ploidy levels, or cytotypic variation. Diploid, tetraploid and hexaploid popula-tions of P. nana occur across parts of the species distribution in the southwestern United States and northern Mexico. A recent study highlighted two areas for which ploidy level inferences were challenging: a population on the Pecos Plains of New Mexico (“Caprock”) and the Davis Mountains region of West Texas. Plants in these areas were sampled and chromosome counts and flow cytometry methods were used to assess ploidy levels and genome sizes. Homoploid variation in ge-nome size was unambiguously documented: the genome size of tetraploid plants from the Davis Mountains was significantly larger than that of plants from Caprock. The general condition of larger genome sizes for plants in the Davis Mountains explains previous difficulty in determining ploidy levels within the region. Most plants at the Caprock population appeared to be tetraploid (2n=28), but chromosome counts revealed variants, including some putative pentaploids. Within the Davis Mountains region, both diploid (2n=14) and tetraploid (2n=28) cytotypes were documented, with a parapatric distribution. Overall, this study clarifies patterns of cytotypic diversity in P. nana, highlights an example of infraspecific, homoploid genome size variation, and contributes to a framework for ongoing evolutionary investigation in this study system.


Ali, H.B.M., A. Meister, & I. Schubert. 2000. DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032.
Bataineh, M.M., B.P. Oswald, A.L. Bataineh, K.W. Farrish, D.W. Coble, & C.B. Edminster. 2007. Plant communities associated with Pinus ponderosa forests in the sky islands of the Davis Mountains, Texas. J. Torrey Bot. Soc. 134:468–478.
Bennett M.D. & I.J. Leitch. 2012. Angiosperm DNA C-values database (release 8.0, Dec. 2012). Available at http://www.kew.org/cvalues/. Accessed August 2017.
Biémont, C. 2008. Within-species variation in genome size. Heredity 101:297–298.
Bino, R.J., S. Lanteri, H.A. Verhoeven, & H.L. Kraak. 1993. Flow cytometric determination of nuclear replication stages in seed tissues. Ann. Bot. 72:181–187.
Chansler, M.T., C.J. Ferguson, S.D. Fehlberg, & L.A. Prather. 2016. The role of polyploidy in shaping morphological diversity in natural populations of Phlox amabilis (Polemoniaceae). Amer. J. Bot. 103:1546–1558.
Davison, J., A. Tyagi, & L. Comai. 2007. Large-scale polymorphism of heterochromatic repeats in the DNA of Arabidopsis thaliana. B.M.C. Pl. Biol. 7:44.
Díez, C.M., B.S. Gaut, E. Meca, E. Scheinvar, S. Montes-Hernandez, L.E. Eguiarte, & M.I. Tenaillon. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol. 199:264–276.
Doležel, J. & J. Bartoš. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95:99–110.
Doležel, J., J. Greilhuber, & J. Suda. 2007. Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. Wiley-VCH, Weinheim, Germany.
Fehlberg, S.D. & C.J. Ferguson. 2012a. Intraspecific cytotypic variation and complicated genetic structure in the Phlox amabilis-P. woodhousei (Polemoniaceae) complex. Amer. J. Bot. 99:865–874.
Fehlberg, S.D. & C.J. Ferguson. 2012b. Intraspecific cytotype variation and conservation: an example from Phlox (Polemoniaceae). Calochortiana 1:189–195.
Galbraith, D.W., G.M. Lambert, J. Macas, & J. Doležel. 1997. Analysis of nuclear DNA and ploidy in higher plants. Curr. Protoc. Cytom. 7.6:1–22.
Kahle, D. & H. Wickham. 2013. ggmap: Spatial Visualization with ggplot2. The R Journal 5: 144–161. Available at http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.
Knight, C.A., N.A. Molinari, & D.A. Petrov. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Ann. Bot. 95:177–190.
Kron, P., J. Suda, & B.C. Husband. 2007. Applications of flow cytometry to evolutionary and population biology. Annual Rev. Ecol. Evol. Syst. 38:847–876.
Locklear, J.H. 2011. Phlox: a natural history and gardener’s guide. Timber Press, Portland.
Meyer, J.R. 1944. Chromosome studies of Phlox. Genetics 29:199–216.
Nandini, A.V., B.G. Murray, I.E.W. O’Brien, & K.R.W. Hammett. 1997. Intra- and interspecific variation in genome size in Lathyrus (Leguminosae). Bot. J. Linn. Soc. 125:359–366.
Otto, S.P. & J. Whitton. 2000. Polyploid incidence and evolution. Ann. Rev. Genet. 34:401–437.
Parisod, C., R. Holderegger, & C. Brochmann. 2010. Evolutionary consequences of autopolyploidy. New Phytol. 186:5–17.
R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/. Accessed August 2017.
Ramsey, J. & T. Ramsey. 2014. Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans., Ser. B 369:20130352.
Smith, D.M. & S.A. Levin. 1967. Karyotypes of eastern North American Phlox. Amer. J. Bot. 54:324–334.
Soltis, D.E., R.J.A. Buggs, J.J. Doyle, & P.S. Soltis. 2010. What we still don’t know about polyploidy. Taxon 59:1387–1403.
Soltis, D.E., P.S. Soltis, D.W. Schemske, J.F. Hancock, J.N. Thompson, B.C. Husband, & W.S. Judd. 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30.
Soltis, D.E., C.J. Visger, & P.S. Soltis. 2014. The polyploidy revolution then...and now: Stebbins revisited. Amer. J. Bot. 101:1057–1078.
Soltis, D.E., C.J. Visger, D.B. Marchant, & P.S. Soltis. 2016. Polyploidy: pitfalls and paths to a paradigm. Amer. J. Bot. 103:1146–1166.
Suda, J., P. Kron, B.C. Husband, & P. Trávní?ek. 2007. Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In J. Doležel, J. Greilhuber, and J. Suda, eds. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, Germany. Pp. 103–130.
Wendel, J.F. & J.J. Doyle. 2005. Polyploidy and evolution in plants. In: R.J. Henry, ed. Plant diversity and evolution: Genotypic and phenotypic variation in higher plants. CABI Publishing, Oxfordshire, U.K. Pp. 97–117.
Wherry, E.T. 1955. The genus Phlox. Morris Arbor. Monogr. 3:1–174.
Wickham, H. 2009. ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York, New York, U.S.A.
Worcester, L., M.H. Mayfield, & C.J. Ferguson. 2012. Cytotypic variation in Phlox pilosa ssp. pilosa (Polemoniaceae) at the western edge of its range in the central United States. J. Bot. Res. Inst. Texas 6:443–451.
Wright, B.A., L.A. Prather, & C.J. Ferguson. 2016. Polyploidy in Phlox nana (Polemoniaceae): diversity and distribution of cytotypes across a desert sky island region of North America. J. Bot. Res. Inst. Texas 10:45–63.
Zale, P.J. 2014. Germplasm collection, characterization, and enhancement of eastern Phlox species. Ph.D. dissertation, The Ohio State University, Columbus, Ohio, U.S.A.




How to Cite

Ladner, J. ., Mayfield, M. H. ., Prather, L. A. ., & Ferguson, C. J. . (2017). Polyploidy and genome size variation in Phlox nana (Polemoniaceae) from the Pecos plains of New Mexico and the Davis Mountains of West Texas. Journal of the Botanical Research Institute of Texas, 11(2), 351–362. https://doi.org/10.17348/jbrit.v11.i2.1075