Conifer tracheids resolve conflicting structural requirements: Data, hypotheses, questions

  • Sherwin Carlquist Santa Barbara Botanic Garden
Keywords: growth rings, margo, torus, wood anatomy, wood physiology


The nature of conduction involves movement of a liquid (under tension or pressure) through a solid (cell walls necessary to direct the liquid and provide mechanical strength). The numerous consequences of the liquid/solid nature of the conductive interface in plants can be viewed as a series of conflicting requirements that are resolved by various mechanisms. For example, the types of mechanical strength conferred by thicker cell walls (latewood) run counter to optimal conduction (earlywood). Conflict resolution situations are examined with light microscopy and SEM to show in detail not merely conflicting requirements but the various types of resolution in various conifers. Abies is presented as exemplary of a cool temperate conifer with numerous aspects to earlywood/latewood structure. Tropical conifers (Araucaria) present different compromises; the riparian conifer Dacrydium guillauminii has only earlywood; the parasitic conifer Parasitaxus has only latewood. Particular conifers have only some of the features by which latewood differs from earlywood. Cell dimorphism is only one aspect of resolution of conflicting requirements; others include modifications in pit size, shape, and density; the nature of the pit membrane; the nature of the pit cavity, pit border and pit aperture; and surface relief (warty layer) of the tracheid wall. The invention of coniferous bordered pits involves a circular shape, so that tension on the margo strands is equal, and thus the pit can be closed. These factors and margo pore maximization necessitate expending a large amount of space to pits in earlywood, the strength of which is thereby lessened and must be compensated by greater wall strength in latewood. The paper concludes with a series of twenty features which represent resolutions of conflicting requirements in terms of anatomical structure. Wood physiological literature is integrated with the anatomical observations.


Bannan, M.W. 1967. Anticlinal divisions and cell length in conifer cambium. Forest Products J. 17:63–69.
Braun, H.J. 1970. Funktionelle Histologie der sekundären Sprossachse. I. Das Holz. Handbuch der Pflanzenanatomie IX (1):1–190. Gebrüder Borntraeger, Berlin and Stuttgart, Germany.
Brodribb, T. & R.S. Hill. 1999. The importance of xylem constraints in the distribution of conifer species. New Phyt. 14:365–372.
Bräunning, A., M. De Ridder, N, Zafirov, I. Garcia-Gonzalez, D.P. Dimitrov, & H. Gärtner. 2016. Tree ring features—indicators of extreme event impacts. IAWA J. 37:206–231.
Carlquist, S. 1975. Ecological strategies of xylem evolution. University of California Press, Berkeley, California, U.S.A.
Carlquist, S. 1982. The use of ethylenediamine for softening hard plant structures for paraffin sectioning. Stain Techn. 57:311–318.
Carlquist, S. 2001. Comparative wood anatomy. 2 ed. Springer Verlag, Berlin and Heidelberg, Germany.
Carlquist, S. 2012. Wood adaptations of Gnetales in an ecological, evolutionary, and structural context. Aliso 30:33–47.
Carlquist, S. & M. Nazaire. 2016. SEM studies of two riparian New Caledonian conifers reveal air chambers in wood; field observations. Aliso 34:1–7.
Delzon, S., C. Duthe, A. Sala, & H. Cochard. 2010. Mechanism of water-stress induced cavitation in conifers: Bordered pit structure and function support the hypothesis of seal capillary-seeding. Pl. Cell Environ. 33:2101–2111.
Domec, J.-C. & B.L. Gartner. 2002. How do water transport and water storage differ in coniferous earlywood and latewood? J. Exp. Bot. 53:2369–2379.
Domec, J.-C., B. Lachenbruch, & F.C. Meinzer. 2002. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. Amer. J. Bot. 93:1588–1600.
Domec, J.-C., B.F. Lachenbruch, F.C. Meinzer, D.R. Woodruff, J.M. Warren, & K.A. McCulloh. 2008. Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc. Natl. Acad. Sci. USA 105:12069–12074.
Evans, R. & J. Ilic. 2001. Rapid production of wood stiffness from microfibril angle and density. Forest Prod. J. 51:53–57.
Feild, T.S. & T.J. Brodribb. 2005. A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae). Plant Cell Environm. 28:1316–1325.
Greguss, P. 1955. Identification of living gymnosperms on the basis of xylotomy. Academiai Kiado, Budapest, Hungary.
Hacke, U.G. & S. Jansen S. 2009. Embolism resistance of three boreal conifer species varies with pit structure. New Phyt. 182:675–686.
Hacke, U.G., J.S. Sperry, & J. Pittermann. 2004. Analysis of circular bordered pit function. II. Gymnosperm tracheids with torus-margo pit membranes. Amer. J. Bot. 91:386–400.
Hacke, U.G., B.G. Lachenbruch, J. Pittermann, S. Mayr, J.-C. Domec, & P.J. Schulte. 2015. The hydraulic architecture of conifers. In: U.G. Hacke, ed., Functional and ecological xylem anatomy. Springer Verlag, Berlin and Heidelberg, Germany. Pp. 39–75.
Jansen, S., J.B. Lamy, R. Burlett, H. Cochard, P. Gasson, & S. Delzon. 2012. Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Pl. Cell Environ. 35:1109–1120.
Johnson, D.M., K.A. McCulloh, D.R. Woodruff, & F.C. Meinzer. 2012. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Pl. Sci. 195:48–53.
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: Comparison of evidence from morphology and 18S RDNA. Amer. J. Bot. 85:986–996.
Kennedy, R.W. 1961. Variation and periodicity of summerwood in some second-growth Douglas-fir. Tappi J. 44:161–168.
Kitin, P., T. Fujii, H. Abe, & K. Takata. 2009. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Ann. Bot. 103:1145–1157.
Kohonen, M. 2006. Engineered wettability in tree capillaries. Langmuir 22:3148–3150.
Kohonen, M. & A. Helland. 2009. On the function of sculpturing in xylem conduits. J. Bionic Engin. 6:324–329.
Kopke, E., L.J. Musselman, & D.J. de Laubenfels. 1981. Studies in the anatomy of Parasitaxus ustus and its root connection. Phytomorphology 31:85–92.
Lancashire, J.R. & A.R. Ennos. 2002. Modelling the hydrodynamic resistance of bordered pits. J. Exper. Bot. 53:1485–1493.
Laubenfels, D.J. de. 1972. Flore de la Nouvelle Calédonie et dépendances, 4. Gymnospermes. Muséum National d’Histoire Naturelle, Paris, France.
Lazzarin, M., A. Crivellaro, C.B. Williams, T.E. Dawson, G. Mozzi, & T. Anfodillo. 2016. Tracheid and pit anatomy vary in tandem in a tall Sequoiadendron giganteum tree. IAWA J. 37:172–175.
Lebourgeois, F. 2000. Climatic signals in earlywood and total ring width of Corsican pine from western France. Ann. For. Sci. 57:155–164.
Liese, W. & J. Bauch. 1967. On the closure of bordered pits in conifers. Wood Sci. Techn. 1:1–13.
Martin, C.E. & S.K. Franke. 2015. Root aeration function of baldcypress knees (Taxodium distichum). Int. J. Pl. Sci. 176:170–173.
Meylan, B.A. & B.G. Butterfield. 1978. The structure of New Zealand woods. DSIR Bulletin 122. New Zealand DSIR. Wellington, New Zealand.
De Micco, V., A.F. Campelo, M. De Luis, A. Bräunning, M. Grabner, G. Battaglia, & P. Cherubini. 2016. Intra-annual density fluctuations in tree rings: How, when, and where? IAWA J. 37:232–259.
Novak, K., M. De Luis, J. Gricar, P. Prislan, M. Merela, K.T. Smith, & K. Cufar. 2016. Missing dark rings associated with drought in Pinus halepensis. IAWA J. 37:260–274.
Pittermann, J. & J.S. Sperry. 2003. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Phys. 23:907–914.
Pittermann, J., J.S. Sperry, U.G. Hacke, J.K. Wheeler, & E.H. Sikkema. 2005. Torus-margo pits help conifers compete with angiosperms. Science 310:5756.
Pittermann, J., J.S. Sperry, U.G. Hacke, J.K. Wheeler, & E.H. Sikkema. 2006a. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: The role of tracheid allometry and cavitation protection. Amer. J. Bot. 93:1265–1273.
Pittermann, J., J.S. Sperry, J.K. Wheeler, U.G. Hacke, & E.H. Sikkema. 2006b. Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Pl. Cell Environ. 29:1618–1628.
Pittermann, J., B. Choat, S. Jansen, S.A. Stuart, L. Lyon, & T.E. Dawson. 2010. The relationship between xylem safety and hydraulic efficiency in the Cupressaceae: The evolution of pit membrane form and function. Pl. Physio. 153:1919–1931.
Pittermann, J., E. Limm, C. Rico, & M.A. Christman. 2011. Structure-function constraints of tracheid-based xylem: A comparison of conifers and ferns. New Phyt. 192:449–461.
Raven, J.A. 1987. The evolution of vascular land plants in relation to supracellular transport processes. Adv. Bot. Res. 5:153–219.
Sinclair, W.T., R.R. Mill, M.F. Gardner, P. Woltz, P. Jaffré, J. Preston, M.L. Hollingsworth, A. Ponge, & M. Möller. 2002. Evolutionary relationships of the new Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trnL-F intron/spacer and nuclear rDNA ITS2 sequences. Pl. Syst. Evol. 233:79–104.
Sperry, J.S., U.G. Hacke, & J. Pittermann. 2006. Size and function in conifer tracheids and angiosperm vessels. Amer. J. Bot. 93:1490–1500.
Stockey, R.A., H. Ko, & P. Woltz. 1995. Cuticle morphology of Parasitaxus de Laubenfels (Podocarpaceae). Int. J. Pl. Sci. 156:723–730.
Wellwood, R.W. 1962. Tensile testing of small wood samples. Pulp Paper Mag. Canada 63(2):T61–T67.
Zobel, B.H. & J.P. van Buijtenen. 1989. Variation among and within trees. In: B.J. Zobel, J.P. van Buijtenen, & P. van Johannes. Wood variation: Its causes and control. Springer Verlag, New York, New York, U.S.A.
How to Cite
Carlquist, S. (2017). Conifer tracheids resolve conflicting structural requirements: Data, hypotheses, questions. Journal of the Botanical Research Institute of Texas, 11(1), 123-141.