Germination, seed traits, and seedling vigor of Pilosocereus robinii (Cactaceae) from northwestern Cuba
DOI:
https://doi.org/10.17348/jbrit.v18.i2.1372Schlagworte:
photoblastic response, orthodox behavior, temperatures, climatic changeAbstract
Studies on the germination of Caribbean cacti are essential for conservation and ecological restoration programs. We evaluated the seed traits and germination response of Pilosocereus robinii under five temperatures and two light conditions and compared the vigor of the seedlings obtained. Seminal traits showed characteristics of orthodox seeds. Pilosocereus robinii seeds showed positive photoblastism and a range of optimal temperatures below 30°C. In all treatments where germination was suboptimal, the seeds demonstrated high recovery percentages when they were exposed to the optimal temperature. The vigor of the seedlings showed a behavior similar to germination. Our study shows that restoration plans for the species' populations are viable from seeds.
Literaturhinweise
ABUD, H.F., N.R. GONÇALVES, R.D.G.E. REIS, D.D.S. PEREIRA, & A.M.E. BEZERRA. 2010. Germinação e expressão morfológica de frutos, sementes e plântulas de Pilosocereus Pachycladus Ritter. Rev. Ciênc. Agron. 41(3):468–474. doi:10.1590/S1806-66902010000300021
ABUD, H.F., N.R. GONÇALVES, M.D.S. PEREIRA, D.D.S. PEREIRA, R.D.G.E. REIS, & A.M.E. BEZERRA. 2012. Germination and morphological characteriza-tion of the fruits, seeds, and seedlings of Pilosocereus Gounellei. Braz. J. Bot. 35(1):11–16. doi:10.1590/S0100-84042012000100003
ACEVEDO-RODRÍGUEZ, P. & M.T. STRONG. 2012. Catalogue of seed plants of the West Indies. Smithsonian Contr. Bot. 98:1–1192. doi: 10.5479/si.0081024X.98.1
ALAIN, H. 1953. Flora de Cuba. Contr. Ocas. Mus. Hist. Nat. Colegio “De La Salle 3:1–472.
BARRIOS, D., J. FLORES, L.R. GONZÁLEZ-TORRES, & A. PALMAROLA. 2015. The role of mucilage in the germination of Leptocereus scopulophilus (Cactaceae) seeds from Pan de Matanzas, Cuba. Botany 93:251–255. doi:10.1139/cjb-2014-0242
BARRIOS, D. & C.A. MANCINA. 2017. Dendrocereus nudiflorus (Cactaceae): pasado, presente y futuro de un anacronismo en peligro de extinción según modelos de nicho climático. Revista Jard. Bot. Nac. Univ. Habana 38, 119–132.
BARRIOS, D. & L.R. GONZÁLEZ-TORRES. 2020. Lista florística en dos parches de matorral xeromorfo costero de Santa Cruz del Norte, Mayabeque. Bissea 14(2):1–3.
BARRIOS, D., J.A. SÁNCHEZ, J. FLORES, & E. JURADO. 2020. Seed traits and germination in the cactaceae family: a review across the Americas. Bot. Sci. 98(3):417–444. doi:10.17129/botsci.2501
BARRIOS, D., J. FLORES, J.A. SÁNCHEZ, & L.R. GONZÁLEZ-TORRES. 2021a. Combined effect of temperature and water stress on seed germination of four Leptocereus spp. (Cactaceae) from Cuban dry forests. Pl. Spec. Biol. 36:512–522. doi:10.1111/1442-1984.12334
BARRIOS, D., S. TOLEDO, J.A. SÁNCHEZ, & L.R. GONZÁLEZ-TORRES. 2021b. Serotiny in Melocactus matanzanus (Cactaceae) and cephalium role in dispersal seeds after individual’s death. Seed Sci. Res. 31(4):326–332. doi:10.1017/S0960258521000283
BARRIOS, D., S. ARIAS, L.R. GONZÁLEZ-TORRES, & L.C. MAJURE. 2023. Lista anotada de cactus nativos y naturalizados de Cuba. Bot. Sci. 101(4):1249–1300. doi:10.17129/botsci.3324
BARTHLOTT, W. & D. HUNT. 2000. Seed diversity in the Cactaceae subfamily Cactoideae. DH Books, Milborne, Port, UK.
BASKIN, C.C. & J.M. BASKIN. 2014. Seeds: Ecology, biogeography, and evolution of dormancy and germination, second ed. Elsevier, UK.
DALZIELL, E.L., C.C. BASKIN, J.M. BASKIN, R.E. YOUNG, K.W. DIXON, & D.J. MERRITT. 2018. Morphophysiological dormancy in the basal angiosperm order Nymphaeales. Ann. Bot.123(1):95–106. doi:10.1093/aob/mcy142
DAWS, M.I., N.C. GARWOOD, & H.W. PRITCHARD 2006. Prediction of desiccation sensitivity in seeds of woody Species: A probabilistic model based on two seed traits and 104 species. Ann. Bot. 97:667–674. doi:10.1093/aob/mcl022
DAWS, M.I., S. BOLTON, D.F.R.P. BURSLEM, N.C. GARWOOD, & C.E. MULLINS. 2007. Loss of desiccation tolerance during germination in neotropical pioneer seeds: implications for seed mortality and germination characteristics. Seed Sci. Res. 17:273–281. doi:10.1017/S0960258507837755
DEHGAN, B. & H. PÉREZ. 2005. Preliminary study shows germination of Caribbean applecactus (Harrisia fragrans) improved with acid scarification and giberellic acid. Native Pl. J. 6: 91–96. doi:10.1353/npj.2005.0017
DOS REIS, M.V., R.G. PÊGO, P.D.D.O. PAIVA, F.A. ARTIOLI-COELHO, & R. PAIVA. 2012. Germinação in vitro e desenvolvimento pós-seminal de plântulas de Pilosocereus aurisetus (Werderm.) Byles & G.D. Rowley (Cactaceae). Rev. Ceres, Viçosa 59(6):739–744.
FAO & ISTA. 2023. Guidelines for the establishment and management of seed testing laboratories – Joint FAO and ISTA Handbook. Rome, Italy. doi:10.4060/cc6103en.
FENNER, M. 1985. Seed ecology. Chapman and Hall, London, UK.
FICK, S.E. & R.J. HIJMANS. 2017. WorldClim 2: new 1-k m spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12):4302–4315. doi:10.1002/joc.5086
FRANCK, A.R. (& 11 others). 2019. Revision of Pilosocereus (Cactaceae) in the Caribbean and northern Andes. Phytotaxa 411(3):129–182. doi:10.11646/phytotaxa.411.3.1
GONZÁLEZ-TORRES, L.R., D. BARRIOS, & A. PALMAROLA. 2012. The ecology and natural history of Leptocereus scopulophilus (Cactaceae). Cactus World 30(2):110–114.
GONZÁLEZ-TORRES, L.R., A. PALMAROLA, L. GONZÁLEZ-OLIVA, E.R. BÉCQUER, E. TESTÉ, & D. BARRIOS. 2016. Lista Roja de la flora de Cuba. Bissea 10(número especial 1):1–352.
LEAL, I.R., R. WIRTH, & M. TABARELLI. 2007. Seed dispersal by ants in the semi-arid Caatinga of north-east Brazil. Ann. Bot. 99(5):885–894 doi:10.1093/aob/mcm017
MARTINS, L.S.T., T.S. PEREIRA, A.S.D.R. CARVALHO, C. BARROS, & A.C.S. DE ANDRADE. 2012. Seed germination of Pilosocereus arrabidae (Cactaceae) from a semiarid region of south?east Brazil. Pl. Spec. Biol. 27(3):191–200. doi:10.1111/j.1442-1984.2011.00360.x
MASCHINSKI, J., D. COATES, L. MONKS, R. DILLON, S. BARRETT, J. POSSLEY, J. LANGE, J. DUQUESNEL, J. GOODMAN, & L. HERMANUTZ. 2023. Rare and threat-ened plant conservation translocations: Lessons learned and future directions. In: S. Florentine, L. Broadhurst, P. Guibson-Roy, & K.W. Dixon, eds. Ecological Restoration: Moving Forward Using Lessons Learned, Springer Nature, Switzerland. Pp. 287–322. doi:10.1007/978-3-031-25412-3_8.
MEDEIROS, R.L.S.D., V.C.D. SOUZA, G.A.D. AZERÊDO, M.A.B. NETO, A.D.S. BARBOSA, & I.S.D.S. OLIVEIRA. 2017. Seed vigor and germination of facheiro plants (Pilosocereus catingicola (Gurke) Byles & Rowley subsp. salvadorensis (Werderm.) Zappi (Cactaceae) at different temperatures. Ciênc. Agrár. 38(5):2873–2886. doi:10.5433/1679-0359.2017v38n5p2873
MEIADO, M.V., M. ROJAS-ARÉCHIGA, J.A. SIQUEIRA-FILHOS, & I.R. LEAL. 2016. Effects of light and temperature on seed germination of cacti of Brazilian ecosystems. Plant Species Biology 31:87–97. doi:10.1111/1442-1984.12087
MUNGUÍA-ROSAS, M.A., M.E. JÁCOME-FLORES, V.J. SOSA, & L.M. QUIROZ-CERÓN. 2009. Removal of Pilosocereus leucocephalus (Cactaceae, tribe Cereeae) seeds by ants and their potential role as primary seed dispersers. J. Arid Environ. 73:578–581. doi:10.1016/j.jaridenv.2008.12.017
NARANJO-DIAZ, L.R. & A. CENTELLA. 1998. Recent trends in the climate of Cuba. Weather 53(3):78–85. doi:10.1002/j.1477-8696.1998.tb03964.x
NASCIMENTO, J.P.B., D.C.M. VIEIRA, & M.V. MEIADO. 2015. Ex situ seed conservation of Brazilian cacti. Gaia Scientia 9(2):111–116.
OLVERA-CARRILLO, Y., J. MÁRQUEZ-GUZMÁN, V.L. BARRADAS, M.E. SÁNCHEZ-CORONADO, & A. OROZCO-SEGOVIA. 2003. Germination of the hard seed coated Opuntia tomentosa S.D., a cacti from the México valley. J. Arid Environ. 55:29–42. doi:10.1016/S0140-1963(02)00268-9
PELISSARI, F., A.C. JOSÉ, M.A.L. FONTES, A.C.B. MATOS, W.V.S. PEREIRA, & J.M.R. FARIA. 2018. A probabilistic model for tropical tree seed desiccation tolerance and storage classification. New forests 49:143–158. doi:10.1007/s11056-017-9610-8
POSSLEY, J., J.J. LANGE, A.R. FRANCK, G.D. GAN, T. WILSON, S. KOLTERMAN, J. DUQUESNEL, & J. O´BRIEN. 2024. First U.S. vascular plant extirpation linked to sea level rise? Pilosocereus millspaughii (Cactaceae) in the Florida Keys, U.S.A. J. Bot. Res. Inst. Texas 18(1):211–223. doi:10.17348/jbrit.v18.i1.1350
QUIALA, E., J. MATOS, G. MONTALVO, M.D. FERIA, M. CHÁVEZ, A. CAPOTE, N. Pérez, R. BARBÓN, & B. KOWALSKI. 2009. In Vitro propagation of Pilosocereus robinii (Lemaire) Byles et Rowley, endemic and endangered cactus. J. PACD 11:18?25. doi:10.56890/jpacd.v11i.110
RAMÍREZ-PADILLA, C.A. & T. VALVERDE. 2005. Germination responses of three congeneric cactus species (Neobuxbaumia) with differing degrees of rarity. J. Arid Environ. 61:333–343. doi:10.1016/j.jaridenv.2004.09.006
RUEDAS, M., T. VALVERDE, & S. CASTILLO 2000. Respuesta germinativa y crecimiento de plántulas de Mammillaria magnimamma (Cactaceae) bajo diferentes condiciones ambientales. Bol. Soc. Bot. México 66:25–35. doi:10.17129/botsci.1608
SALAZAR, A., J. MASCHINSKI, & D. POWELL 2013. Ex-situ seed conservation of endangered key tree cactus (Pilosocereus robinii). J. Biodivers. Endang. Spec. 1(3):111–114. doi:10.4172/2332-2543.1000111
SÁNCHEZ, J.A., M. PERNÚS, Y. TORRES-ARIAS, D. BARRIOS, & Y. Dupuig. 2019. Dormancia y germinación en semillas de árboles y arbustos de Cuba: implicaciones para la restauración ecológica. Acta Bot. Cub. 218(2):77–108.
SÁNCHEZ-SOTO, B., E. GARCÍA-MOYA, T. TERRAZAS, & A. REYES-OLIVAS. 2005. Efecto de la hidratación discontinua sobre la germinación de tres cactáceas del desierto costero de Topolobampo, Ahome, Sinaloa. Cact. Suc. Mex. 50:4–14.
SANTOS, L.D.N., I.M.S. PEREIRA, J.R. RIBEIRO, & F.M.G. LAS-CASAS. 2019. Frugivoria por aves em quatro espécies de Cactaceae na Caatinga, uma floresta seca no Brasil. Iheringia, Sér. Zoologia 109:e2019034. doi:10.1590/1678-4766e2019034
SEAL, C.E.(& 16 others). 2017. Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae. Glob. Change Biol. 23(12):5309–5317. doi:10.1111/gcb.13796
SENTINELLA, A.T., D.I. WARTON, W.B. SHERWIN, C.A. OFFORD, & A.T. MOLES. 2020. Tropical plants do not have narrower temperature tolerances, but are more at risk from warming because they are close to their upper thermal limits. Glob. Ecol. Biogeogr 29(8):1387–1398. doi:10.1111/geb.13117
SILVA, J.H.C.S., G.A. AZERÊDO, & V.A. TARGINO. 2020. Resposta germinativa de sementes de cactáceas colunares sob diferentes regimes de temperatura e de potencial hídrico. Scientia Plena 16(12):123101. doi:10.14808/sci.plena.2020.123101
STEPHENSON, T.S., L.A. VINCENT, T. ALLEN, C.J. VAN MEERBEECK, N. MCLEAN, T.C. PETERSON, & ET AL. 2014. Changes in extreme temperature and pre-cipitation in the Caribbean region, 1961–2010. Int. J. Climatol. 34:2957–2971. doi:10.1002/joc.3889
THOMPSON, K., S.R. BAND, & J.G. HODGSON. 1993. Seed size and shape predict persistence in soil. Funct. Ecol. 7:236–241. doi:10.2307/2389893
VÁZQUEZ?CASTILLO, S., A. MIRANDA?JÁCOME, & E. RUELAS. 2018. Patterns of frugivory in the columnar cactus Pilosocereus leucocephalus. Ecol. Evol. 9:268–1277. doi:10.1002/ece3.4833
ZIMMER, K. 1967. Temperatur und Keimung bei verschiedenen Kakteen. Kakteen And. Sukk. 18:31–33.
Downloads
Veröffentlicht
Zitationsvorschlag
Ausgabe
Rubrik
Lizenz
Copyright (c) 2024 Botanical Research Institute of Texas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Nicht-kommerziell - Keine Bearbeitungen 4.0 International.