Vegetation and environmental factors of inland saline wetlands in the upper St. Johns River Basin, Florida, U.S.A.
DOI:
https://doi.org/10.17348/jbrit.v19.i3.1426Palabras clave:
Wetlands, Inland Saline Wetlands, St. Johns RiverResumen
Los humedales salinos continentales son un ecosistema global que rara vez se da en climas húmedos. A lo largo de la cuenca alta del río St. Johns, en la llanura costera del sureste, existen humedales salinos interiores formados por aguas subterráneas salinas fósiles. El objetivo de este estudio era describir y evaluar la distribución de especies a lo largo de gradientes ambientales en los humedales salinos interiores de la cuenca superior del río St. Johns. En junio de 2022, se evaluó la composición y cobertura de las especies en 82 parcelas de un metro cuadrado en el Área de Conservación del Lago Buck (BLCA) en el condado de Volusia, Florida. Se recogieron muestras de suelo de cada parcela y se analizaron la conductividad eléctrica, el pH, el carbono total, el nitrógeno total, el color del suelo y el tipo de suelo. La elevación se estimó en cada parcela a partir de un modelo digital de elevación. La agrupación jerárquica aglomerativa y el método de la silueta determinaron 9 conjuntos óptimos de vegetación. El análisis de correspondencia restringido dio cuenta del 22,5% de la variación en la distribución de especies por sitio y la permutación del modelo CCA encontró que la conductividad eléctrica, la elevación, el color del suelo, el tipo de suelo y el cierre del dosel eran variables ambientales significativas.
Citas
ADAMS, D. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44:445–456.
ALVAREZ-ROGEL, J., J. MARTINEZ-SANCHEZ, L. BLAZQUEZ, & M. SEMITIEL. 2006. A conceptual model of salt marsh plant distribution in coastal dunes of southeastern Spain. Wetlands 26:703–717.
AUSTIN, M. 2013. Vegetation and environment: discontinuities and continuities. In: E. van der Maarel & J. Franklin, eds. Vegetation ecology second edition. Wiley-Blackwell, UK. Pp. 271–107.
BELAINEH, G., J. STEWART, P. SUCSY, L. MOTZ, K. PARK, S. ROUHANI, & M. CULLUM. 2011. Groundwater hydrology. In: E. Lowe, L. Battoe, H. Wilkening, M. Cullum, & T. Bartol, eds. St. Johns. River water supply impact study technical publication SJ2012-1. St. Johns River Water Management District, Florida. Pp. 4-1 – 2-100.
BERNTESS, M. & A. ELLISON. 1987. Determinants of patterns in a New England salt marsh plant community. Ecol. Monogr. 57:129–147.
BURCHILL, C. & N. KENKEL. 1991. Vegetation-environmental relationships of an inland boreal salt pan. Canad. J. Bot. 69:722–732.
BUI, E. 2013. Soil salinity: a neglected factor in plant ecology and biogeography. J. Arid Environm. 92:14–25. doi.org/10.1016/j.jaridenv.2012.12.014.
EALLONARDO, A. & D. LEOPOLD. 2014. Inland salt marshes of the northeastern United States: stress, disturbance and compositional stability. Wetlands 34:155–166. doi:10.1007/s13157-013-0493-y.
FLORIDA NATURAL AREAS INVENTORY. 2006. Natural community descriptions to accompany a vegetation map of Salt Lake Wildlife Management Area, unpublished report to the Florida Fish and Wildlife Conservation Commission. Florida Natural Areas Inventory, Tallahassee, Florida, U.S.A.
FLORIDA NATURAL AREAS INVENTORY. 2010. Guide to the natural communities of Florida. Florida Natural Areas Inventory, Tallahassee, Florida, U.S.A.
FLOWERS, T. & T. COLMER. 2008. Salinity tolerance in halophytes. New Phytol. 179:945-963. htttp://doi: 10.1111/j.1469-8137.2008.02531.x.
GRUNSTRA, M. & O. VAN AUKEN. 2007. Using GIS to display complex soil salinity patterns in an inland salt marsh. In: D. Sarkar, R. Datta & R. Hannigan, eds. Developments in Environmental Science Volume 5 Elsevier, DOI:10.1016/S1474-8177(07)05019-X.
HANLON, E. 2015. Soil pH and electrical conductivity: a county extension soil laboratory manual, UF IFAS extension circular 1081. UF IFAS, Gainesville, Florida, U.S.A.
KINSER, P., S. FOX, & A. CERIC. 2012. Description of river segments used in the WSIS study. In: E. Lowe, L. Battoe, H. Wilkening, M. Cullum, & T. Bartol, eds. St. Johns. River Water Supply Impact Study Technical Publication SJ2012-1. Florida. Pp.2-1 – 2-35.
LEGENDRE, P., J. OKSANEN, & C. TER BRAAK. 2011. Testing the significance of canonical axes in redundancy analysis. Meth. Ecol. & Evol. 2:269-277 doi: 10.1111/j.2041-210X.2010.00078.x.
LJEVNAIC-MASIC, B., D. DZIGURSKI, L. NIKOLIC, M. BRDAR-JORKANOVIC, R. CABILOVSKI, V. CIRIC, & A. PETROVIC. 2020. Assessment of the habitat conditions of a rare and endangered inland saline wetland community with Bolboschoenus maritimus (L.) Palla dominance in southeastern Europe: the effects of physical-chemical water and soil properties. Wetlands Ecol. Managem. doi.org/10.1007/s11273-020-09721-4.
LOKHANDE, V., T. NIKAM, V. PATADE, M. AHIRE, & P. SUPRASANNA. 2011. Effects of optimal and supra-optimal salinity stress on antioxidative defense, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. J. Pl. Biotechnol. 104:41– 49 https://doi.org/10.1007/s11240-010-9802-9.
LOWE, E. 1983. Distribution and structure of floodplain plant communities in the upper basin of the St. Johns. River Florida. St. Johns River Water Management District technical publication SJ83-8. Florida, Pp. 1–74.
LOWE, E. 1986. The relationship between hydrology and vegetational pattern within the floodplain marsh of a subtropical Florida lake. Florida Sci. 49:213–233.
MAECHLER, M., P. ROUSSEEUW, A. STRUYF, M. HUBERT, & K. HORNIK. 2021. Cluster: Cluster analysis basics and extensions. R package version 2.1.2.
MARTINEZ, M., T. VALVERDE, & P. MORENO-CASASOLA. 1992. Germination response to temperature, salinity, light and depth of sowing of ten tropical dune species. Oecologia 92:343–353.
MITSCH, W. & J. GOSSELINK. 2007. Wetlands. John Wiley & Sons, New Jersey, U.S.A.
MONTAGUE, C. & R. WIEGERT. 1990. Salt marshes. In: R. Myers & J. Ewel, eds. Ecosystems of Florida. University of Central Florida Press, Orlando Florida, U.S.A. Pp. 481–516.
NOSS, R. 2018. Fire ecology of Florida and the southeastern coastal plain. University Press of Florida, Gainesville, U.S.A.
ODUM, W. 1988. Comparative ecology of tidal freshwater and salt marshes. Ann. Rev. Ecol. Syst. 19:147–176.
OKSANEN, J., F. GUILLAUME, F. BLANCHET, M. FRIENDLY, R. KINDT, R. LEGENDRE, D. MCGLINN, P. MINCHIN, R. O'HARA, G. LMPSON, P. SOLYMOS, M. HENRY, H. STEVENS, E. SZOECS, & H. WAGNER. 2020. Vegan: Community ecology package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.
PALMER, M. n.d. Environmental variables in constrained ordination (e.g. CCA, RDA, DCCA). Oklahoma State University. https://ordination.okstate.edu/envvar.htm. Accessed March 2024.
PAN, D., A. BOUCHARD, P. LEGENDRE, & G. DOMON. 1998. Influence of edaphic factors on the spatial structure of inland halophytic communities: a case study in China. J. Veg. Sci. 9:797–804.
PEET, R. & D. ROBERTS. 2013. Classification of natural and semi-natural vegetation. In: E. van der Maarel & J. Franklin, eds. Vegetation Ecology Second Edition. Wiley-Blackwell, UK. Pp. 28–60.
PENNINGS, S., M. GRANT, & M. BERTNESS. 2005. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and com-petition. J. Ecol. 93:159–167. https://doi: 10.1111/j.1365-2745.2004.00959.
PIERNIK, A. 2003. Inland halophilous vegetation as indicators of soil salinity. Basic Appl. Ecol. 4:525–536 https://doi: 0.1078/1439-1791-00154.
QUINTANA-ASCENCIO, P., J. FAUTH, C. MORALES, K. PONZIO, D. HALL, & K. SNYDER. 2013. Taming the Beast: Managing hydrology to control willow (Salix caroliniana) seedlings and cutting. Restorat. Ecol. 21:636-647 doi: 10.1111/j.1526-100X.2012.00940.x.
SIEBEN, E., N. COLLINS, H. MTCHALI, & C. VENTER. 2016. The vegetation of inland wetlands with salt-tolerant vegetation in South Africa: description, classification, and explanatory environmental factors. S. African J. Bot. 104:199–207.
TOTH, D. 1988. Saltwater intrusion in coastal areas of Volusia, Brevard and Indian River counties St. Johns River Water Management District Technical Publication SJ88-1. St. Johns River Water Management District, Florida, U.S.A. Pp. 1–191.
TUG, G., O. KETENOGLU, & A. BILGIN. 2012. The relationships between plant zonation and edaphic factors in halophytic vegetation around Lake Tuz, central Anatolia Turkey. Rendiconti Lince Scienze Fisiche e Naturali 23:355–363. https://doi: 10.1007/s12210-012-0197-x.
UNGAR, I. 1967. Vegetation-soil relationships on saline soils in northern Kansas. Amer. Midl. Naturalist 78:98–120.
UNGAR, I. 1968. Species-soil relationships on the great salt plains of northern Oklahoma. Amer. Midl. Naturalist 80: 392–406.
UNGAR, I. 1970. Species-soil relationships on sulfate dominated soils of South Dakota. Amer. Midl. Naturalist 83: 343–357.
UNGAR, I. 1973. Salinity tolerance of inland halophytic vegetation of North America. Bull. Soc. Bot. France 120:217–222. DOI:10.1080/00378941.1973.10839158.
UNGAR, I., D. BENNER, & D. MCGRAW. 1979. The distribution and growth of Salicornia europaea on an inland salt pan. Ecology 60:329–336.
UNGAR, I. 1998. Are biotic factors significantly influencing the distribution of halophytes in saline habitats? Bot. Rev. 64:179–199.
UNITED STATES SALINITY LABORATORY STAFF. 1954. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook No. 60. United States Department of Agriculture, Washington, DC, U.S.A.
VASILAS, L., W. HURT, & J.F. BERKOWITZ, EDS. 2018. Field indicators of hydric soils in the United States, Version 8.2. United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the National Technical Committee for Hydric Soils.
WATTS, F. & M. COLLINS. 2008. Soils of Florida. Soil Science Society of America, Wisconsin, U.S.A.
WEIL, R. & N. BRADY. 2017. The nature and properties of soils. Peason, London, UK.
WHITTAKER, R. 1967. Gradient analysis of vegetation. Bio. Rev. 28:1–239.
WU, M., Y. HU, P. WU, P. HE, N. HE, B. ZHANG, & S. ZHANG. 2020. Does soil pore water salinity or elevation influence vegetation spatial patterns along coasts? A case study of restored coastal wetlands in Nanhui, Shanghai. Wetlands 40:2691–2700. https://doi.org/10.1007/s13157-020-01366-6.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Botanical Research Institute of Texas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.